Application module: Printed physical layout template ISO/TS 10303-1737:2021(E)
© ISO

Cover page
Table of contents
Copyright
Foreword
Introduction
1 Scope
2 Normative references
3 Terms, definitions and abbreviated terms
    3.1 Terms and definitions
    3.2 Abbreviated terms

4 Information requirements
   4.1 Required AM ARMs
   4.2 ARM type definitions
   4.3 ARM entity definitions
   4.4 ARM subtype constraint definition
   4.5 ARM function definitions
5 Module interpreted model
   5.1 Mapping specification
   5.2 MIM EXPRESS short listing
     5.2.1 MIM type definition
     5.2.2 MIM entity definitions
     5.2.3 MIM subtype constraint definition

A MIM short names
B Information object registration
C ARM EXPRESS-G   EXPRESS-G
D MIM EXPRESS-G   EXPRESS-G
E Computer interpretable listings
F Change history
Bibliography
Index

Introduction

ISO 10303 is an International Standard for the computer-interpretable representation of product information and for the exchange of product data. The objective is to provide a neutral mechanism capable of describing products throughout their life cycle. This mechanism is suitable not only for neutral file exchange, but also as a basis for implementing and sharing product databases, and as a basis for retention and archiving.

This part of ISO 10303 specifies an application module for the representation of layout templates for layered electrical design where the templates provide a specific function in the design. The templates might be predefined and stored in a library. The templates might be used to define material, geometric, and functional properties for embedded passive components. The templates might be used to define material, structural and functional properties for microwave and rf components realized as part of the interconnect substrate. The templates might be used to define a cross-section representation using boundary element structures with two dimensional geometry. The cross-section representation might be used to define commonly used transmission line types including but not limited to microstrip, stripline, offset stripline, and co-planar structures. Terminal relationships are provided to support mapping between transmission line structures and lumped representations.

Clause 1 defines the scope of the application module and summarizes the functionality and data covered. Clause 3 lists the words defined in this part of ISO 10303 and gives pointers to words defined elsewhere. The information requirements of the application are specified in Clause 4 using terminology appropriate to the application. A graphical representation of the information requirements, referred to as the application reference model, is given in Annex C. Resource constructs are interpreted to meet the information requirements. This interpretation produces the module interpreted model (MIM). This interpretation, given in 5.1, shows the correspondence between the information requirements and the MIM. The short listing of the MIM specifies the interface to the resources and is given in 5.2. A graphical representation of the short listing of the MIM is given in Annex D.

In ISO 10303, the same English language words can be used to refer to an object in the real world or concept, and as the name of an EXPRESS data type that represents this object or concept.

The following typographical convention is used to distinguish between these. If a word or phrase occurs in the same typeface as narrative text, the referent is the object or concept. If the word or phrase occurs in a bold typeface or as a hyperlink, the referent is the EXPRESS data type.

The name of an EXPRESS data type can be used to refer to the data type itself, or to an instance of the data type. The distinction between these uses is normally clear from the context. If there is a likelihood of ambiguity, either the phrase "entity data type" or "instance(s) of" is included in the text.

Double quotation marks " " denote quoted text. Single quotation marks ' ' denote particular text string values.



© ISO 2021 — All rights reserved