Integrated generic resource: Geometric and topological representation ISO 10303-42:2021(E)
© ISO

Cover page
Table of contents
Copyright
Foreword
Introduction
1 Scope
2 Normative references
3 Terms, definitions and abbreviated terms
    3.1 Terms and definitions
    3.2 Abbreviated terms

4 Geometry
   4.1 General
   4.2 Fundamental concepts and assumptions
   4.3 Geometry constant definition
   4.4 Geometry type definitions
   4.5 Geometry entity definitions
   4.6 Geometry function definitions
   4.7 Geometry rule definitions
5 Topology
   5.1 General
   5.2 Fundamental concepts and assumptions
   5.3 Topology constant definition
   5.4 Topology type definitions
   5.5 Topology entity definitions
   5.6 Topology function definitions
6 Geometric model
   6.1 General
   6.2 Fundamental concepts and assumptions
   6.3 Geometric model type definitions
   6.4 Geometric model entity definitions
   6.5 Geometric model function definitions
7 Scan data 3d shape model
   7.1 General
   7.2 Fundamental concepts and assumptions
   7.3 Scan data 3d shape model type definition
   7.4 Scan data 3d shape model entity definitions
   7.5 Scan data 3d shape model function definitions

A Short names of entities
B Information object registration
C Computer interpretable listings
D EXPRESS-G diagrams
E Change history
Bibliography
Index

Bibliography

[1] ISO/IEC 8824-1, Information technology — Abstract Syntax Notation One (ASN.1) — Part 1: Specification of basic notation

[2] ISO 10303-21, Industrial automation systems and integration — Product data representation and exchange — Part 21: Implementation methods: Clear text encoding of the exchange structure

[3] ISO 10303-22, Industrial automation systems and integration — Product data representation and exchange — Part 22: Implementation methods: Standard data access interface

[4] ISO/ASTM 52915:2013, Standard specification for additive manufacturing file format (AMF) Version 1.1

[5] BARTELS, R. H., BEATTY, J. C. and BARSKY, B. A., Splines in Computer Graphics and Geometric Modelling , Morgan Kaufman, 1987.

[6] COTTRELL,J. A., HUGHES, T.J.R., BAZILEVS, Y., Isogeometric Analysis. Towards Integration of CAD and FEA , John Wiley & Sons , 2009.

[7] T. Dokken, T., Pettersen, K.F. Lyche,T. , Polynomial splines over locally refined box-partitions. , Computer Aided Geometric Design 30, 331-356 , 2013.Available from the World Wide Web: <http://dx.doi.org/10.1016/j.cagd.2012.12.005>

[8] FARIN, G., Curves and Surfaces for Computer Aided Geometric Design, 3rd. Edition , Academic Press, 1993.

[9] GIBSON, C. G., Elementary Geometry of Differentiable Curves , Cambridge University Press, 2001.

[10] GRAY, A., Modern Differential Geometry of Curves and Surfaces with Mathematica, 2nd. edition; pp 64-66 , CRC Press, 2001.

[11] NISTIR 4412, Initial Graphics Exchange Specification (IGES) , Version 5.0

[12] PIEGL, L. and TILLER, W., The NURBS Book , Springer-Verlag, 1994.

[13] PRATT, M. J., Cyclides in computer aided geometric design; pp. 221 -242 , Computer Aided Geometric Design 7, 1990.

[14] PRATT, M. J., Cyclides in computer aided geometric design II; pp. 131-152 , Computer Aided Geometric Design 12, 1995.

[15] Sederberg,J, Zheng, T.W., Bakenov, A., Nasri, A. , T-splines and T-NURCCs , ACM Transactions on Graphics 22 , 477-484 , 2003.

[16] WILSON, P. R., IEEE Computer Graphics & Applications , Vol. 5, No 8, pp. 24-36; Euler formulas and geometric modeling, August 1985.



© ISO 2021 — All rights reserved