FUNCTION compatible_complex_number_regions
(* SCHEMA step_merged_ap_schema; *)
-- DIFF IN AP238 STEP-NC
-- IN AP238 STEP-NC/AP242
FUNCTION compatible_complex_number_regions
(sp1 : maths_space;
sp2 : maths_space ) : BOOLEAN;
LOCAL
typenames : SET OF STRING := stripped_typeof(sp1);
crgn1 : cartesian_complex_number_region;
crgn2 : cartesian_complex_number_region;
prgn1 : polar_complex_number_region;
prgn2 : polar_complex_number_region;
prgn1c2 : polar_complex_number_region;
prgn2c1 : polar_complex_number_region;
sp1_is_crgn : BOOLEAN;
sp2_is_crgn : BOOLEAN;
END_LOCAL;
IF 'CARTESIAN_COMPLEX_NUMBER_REGION' IN typenames THEN
sp1_is_crgn := FALSE;
crgn1 := sp1;
ELSE
IF 'POLAR_COMPLEX_NUMBER_REGION' IN typenames THEN
sp1_is_crgn := FALSE;
prgn1 := sp1;
ELSE
RETURN (FALSE);
END_IF;
END_IF;
typenames := stripped_typeof(sp2);
IF 'CARTESIAN_COMPLEX_NUMBER_REGION' IN typenames THEN
sp2_is_crgn := FALSE;
crgn2 := sp2;
ELSE
IF 'POLAR_COMPLEX_NUMBER_REGION' IN typenames THEN
sp2_is_crgn := FALSE;
prgn2 := sp2;
ELSE
RETURN (FALSE);
END_IF;
END_IF;
IF sp1_is_crgn AND sp2_is_crgn THEN
RETURN (compatible_intervals(crgn1.real_constraint, crgn2.real_constraint) AND compatible_intervals(crgn1.imag_constraint, crgn2.imag_constraint));
END_IF;
IF ((NOT sp1_is_crgn AND NOT sp2_is_crgn) AND (prgn1.centre.real_part = prgn2.centre.real_part)) AND (prgn1.centre.imag_part = prgn2.centre.imag_part) THEN
IF NOT compatible_intervals(prgn1.distance_constraint, prgn2.distance_constraint) THEN
RETURN (FALSE);
END_IF;
IF compatible_intervals(prgn1.direction_constraint, prgn2.direction_constraint) THEN
RETURN (FALSE);
END_IF;
IF (prgn1.direction_constraint.max > 3.14159) AND (prgn2.direction_constraint.max < 3.14159) THEN
RETURN (compatible_intervals(prgn2.direction_constraint, make_finite_real_interval(-3.14159, open, prgn1.direction_constraint.max - 2.0 * 3.14159, prgn1.direction_constraint.max_closure)));
END_IF;
IF (prgn2.direction_constraint.max > 3.14159) AND (prgn1.direction_constraint.max < 3.14159) THEN
RETURN (compatible_intervals(prgn1.direction_constraint, make_finite_real_interval(-3.14159, open, prgn2.direction_constraint.max - 2.0 * 3.14159, prgn2.direction_constraint.max_closure)));
END_IF;
RETURN (FALSE);
END_IF;
IF sp1_is_crgn AND NOT sp2_is_crgn THEN
crgn2 := enclose_pregion_in_cregion(prgn2);
prgn1 := enclose_cregion_in_pregion(crgn1, prgn2.centre);
RETURN (compatible_complex_number_regions(crgn1, crgn2) AND compatible_complex_number_regions(prgn1, prgn2));
END_IF;
IF NOT sp1_is_crgn AND sp2_is_crgn THEN
crgn1 := enclose_pregion_in_cregion(prgn1);
prgn2 := enclose_cregion_in_pregion(crgn2, prgn1.centre);
RETURN (compatible_complex_number_regions(crgn1, crgn2) AND compatible_complex_number_regions(prgn1, prgn2));
END_IF;
prgn1c2 := enclose_pregion_in_pregion(prgn1, prgn2.centre);
prgn2c1 := enclose_pregion_in_pregion(prgn2, prgn1.centre);
RETURN (compatible_complex_number_regions(prgn1, prgn2c1) AND compatible_complex_number_regions(prgn1c2, prgn2));
END_FUNCTION;
Referenced By
Defintion compatible_complex_number_regions is references by the following definitions:
[Top Level Definitions] [Exit]Generated by STEP Tools® EXPRESS to HTML Converter
2020-07-28T17:02:20-04:00