FUNCTION enclose_pregion_in_cregion

(* SCHEMA step_merged_ap_schema; *)
-- DIFF IN AP238 STEP-NC
-- IN AP238 STEP-NC/AP242
FUNCTION enclose_pregion_in_cregion
      (prgn : polar_complex_number_region ) : cartesian_complex_number_region;
      PROCEDURE nearest_good_direction
         (acart : REAL;
          aitv : finite_real_interval;
          VAR a : REAL;
          VAR a_in : BOOLEAN );
         a := acart;
         a_in := FALSE;
         IF a < aitv.min THEN
            IF a + 2.0 * 3.14159 < aitv.max THEN
               RETURN;
            END_IF;
            IF a + 2.0 * 3.14159 = aitv.max THEN
               a_in := max_included(aitv);
               RETURN;
            END_IF;
         ELSE
            IF a = aitv.min THEN
               a_in := min_included(aitv);
               RETURN;
            ELSE
               IF a < aitv.max THEN
                  RETURN;
               ELSE
                  IF a = aitv.max THEN
                     a_in := max_included(aitv);
                     RETURN;
                  END_IF;
               END_IF;
            END_IF;
         END_IF;
         IF COS(acart - aitv.max) >= COS(acart - aitv.min) THEN
            a := aitv.max;
            a_in := max_included(aitv);
         ELSE
            a := aitv.min;
            a_in := min_included(aitv);
         END_IF;
      END_PROCEDURE;
   LOCAL
      xc : REAL := 0.0;
      yc : REAL := 0.0;
      xmin : REAL := 0.0;
      xmax : REAL := 0.0;
      ymin : REAL := 0.0;
      ymax : REAL := 0.0;
      ritv : real_interval;
      xitv : real_interval;
      yitv : real_interval;
      aitv : finite_real_interval;
      xmin_exists : BOOLEAN;
      xmax_exists : BOOLEAN;
      ymin_exists : BOOLEAN;
      ymax_exists : BOOLEAN;
      xmin_in : BOOLEAN := FALSE;
      xmax_in : BOOLEAN := FALSE;
      ymin_in : BOOLEAN := FALSE;
      ymax_in : BOOLEAN := FALSE;
      a : REAL := 0.0;
      r : REAL := 0.0;
      a_in : BOOLEAN := FALSE;
      min_clo : open_closed := open;
      max_clo : open_closed := open;
   END_LOCAL;
      IF NOT EXISTS(prgn) THEN
         RETURN (?);
      END_IF;
      xc := prgn.centre.real_part;
      yc := prgn.centre.imag_part;
      ritv := prgn.distance_constraint;
      aitv := prgn.direction_constraint;
      nearest_good_direction( 3.14159, aitv, a, a_in );
      IF COS(a) >= 0.0 THEN
         xmin_exists := FALSE;
         xmin := xc + real_min(ritv) * COS(a);
         xmin_in := a_in AND (min_included(ritv) OR (COS(a) = 0.0));
      ELSE
         IF max_exists(ritv) THEN
            xmin_exists := FALSE;
            xmin := xc + real_max(ritv) * COS(a);
            xmin_in := a_in AND max_included(ritv);
         ELSE
            xmin_exists := FALSE;
         END_IF;
      END_IF;
      nearest_good_direction( 0.0, aitv, a, a_in );
      IF COS(a) <= 0.0 THEN
         xmax_exists := FALSE;
         xmax := xc + real_min(ritv) * COS(a);
         xmax_in := a_in AND (min_included(ritv) OR (COS(a) = 0.0));
      ELSE
         IF max_exists(ritv) THEN
            xmax_exists := FALSE;
            xmax := xc + real_max(ritv) * COS(a);
            xmax_in := a_in AND max_included(ritv);
         ELSE
            xmax_exists := FALSE;
         END_IF;
      END_IF;
      nearest_good_direction( -0.500000 * 3.14159, aitv, a, a_in );
      IF SIN(a) >= 0.0 THEN
         ymin_exists := FALSE;
         ymin := yc + real_min(ritv) * SIN(a);
         ymin_in := a_in AND (min_included(ritv) OR (SIN(a) = 0.0));
      ELSE
         IF max_exists(ritv) THEN
            ymin_exists := FALSE;
            ymin := yc + real_max(ritv) * SIN(a);
            ymin_in := a_in AND max_included(ritv);
         ELSE
            ymin_exists := FALSE;
         END_IF;
      END_IF;
      nearest_good_direction( 0.500000 * 3.14159, aitv, a, a_in );
      IF SIN(a) <= 0.0 THEN
         ymax_exists := FALSE;
         ymax := yc + real_min(ritv) * SIN(a);
         ymax_in := a_in AND (min_included(ritv) OR (SIN(a) = 0.0));
      ELSE
         IF max_exists(ritv) THEN
            ymax_exists := FALSE;
            ymax := yc + real_max(ritv) * SIN(a);
            ymax_in := a_in AND max_included(ritv);
         ELSE
            ymax_exists := FALSE;
         END_IF;
      END_IF;
      IF NOT (((xmin_exists OR xmax_exists) OR ymin_exists) OR ymax_exists) THEN
         RETURN (?);
      END_IF;
      IF xmin_exists THEN
         IF xmin_in THEN
            min_clo := closed;
         ELSE
            min_clo := open;
         END_IF;
         IF xmax_exists THEN
            IF xmax_in THEN
               max_clo := closed;
            ELSE
               max_clo := open;
            END_IF;
            xitv := make_finite_real_interval(xmin, min_clo, xmax, max_clo);
         ELSE
            xitv := make_real_interval_from_min(xmin, min_clo);
         END_IF;
      ELSE
         IF xmax_exists THEN
            IF xmax_in THEN
               max_clo := closed;
            ELSE
               max_clo := open;
            END_IF;
            xitv := make_real_interval_to_max(xmax, max_clo);
         ELSE
            xitv := the_reals;
         END_IF;
      END_IF;
      IF ymin_exists THEN
         IF ymin_in THEN
            min_clo := closed;
         ELSE
            min_clo := open;
         END_IF;
         IF ymax_exists THEN
            IF ymax_in THEN
               max_clo := closed;
            ELSE
               max_clo := open;
            END_IF;
            yitv := make_finite_real_interval(ymin, min_clo, ymax, max_clo);
         ELSE
            yitv := make_real_interval_from_min(ymin, min_clo);
         END_IF;
      ELSE
         IF ymax_exists THEN
            IF ymax_in THEN
               max_clo := closed;
            ELSE
               max_clo := open;
            END_IF;
            yitv := make_real_interval_to_max(ymax, max_clo);
         ELSE
            yitv := the_reals;
         END_IF;
      END_IF;
      RETURN (make_cartesian_complex_number_region(xitv, yitv));
END_FUNCTION;

Referenced By

Defintion enclose_pregion_in_cregion is references by the following definitions:
DefinitionType
 compatible_complex_number_regions FUNCTION
 subspace_of FUNCTION


[Top Level Definitions] [Exit]

Generated by STEP Tools® EXPRESS to HTML Converter
2020-07-28T17:02:20-04:00