FUNCTION enclose_pregion_in_cregion
(* SCHEMA step_merged_ap_schema; *)
-- DIFF IN AP238 STEP-NC
-- IN AP238 STEP-NC/AP242
FUNCTION enclose_pregion_in_cregion
(prgn : polar_complex_number_region ) : cartesian_complex_number_region;
PROCEDURE nearest_good_direction
(acart : REAL;
aitv : finite_real_interval;
VAR a : REAL;
VAR a_in : BOOLEAN );
a := acart;
a_in := FALSE;
IF a < aitv.min THEN
IF a + 2.0 * 3.14159 < aitv.max THEN
RETURN;
END_IF;
IF a + 2.0 * 3.14159 = aitv.max THEN
a_in := max_included(aitv);
RETURN;
END_IF;
ELSE
IF a = aitv.min THEN
a_in := min_included(aitv);
RETURN;
ELSE
IF a < aitv.max THEN
RETURN;
ELSE
IF a = aitv.max THEN
a_in := max_included(aitv);
RETURN;
END_IF;
END_IF;
END_IF;
END_IF;
IF COS(acart - aitv.max) >= COS(acart - aitv.min) THEN
a := aitv.max;
a_in := max_included(aitv);
ELSE
a := aitv.min;
a_in := min_included(aitv);
END_IF;
END_PROCEDURE;
LOCAL
xc : REAL := 0.0;
yc : REAL := 0.0;
xmin : REAL := 0.0;
xmax : REAL := 0.0;
ymin : REAL := 0.0;
ymax : REAL := 0.0;
ritv : real_interval;
xitv : real_interval;
yitv : real_interval;
aitv : finite_real_interval;
xmin_exists : BOOLEAN;
xmax_exists : BOOLEAN;
ymin_exists : BOOLEAN;
ymax_exists : BOOLEAN;
xmin_in : BOOLEAN := FALSE;
xmax_in : BOOLEAN := FALSE;
ymin_in : BOOLEAN := FALSE;
ymax_in : BOOLEAN := FALSE;
a : REAL := 0.0;
r : REAL := 0.0;
a_in : BOOLEAN := FALSE;
min_clo : open_closed := open;
max_clo : open_closed := open;
END_LOCAL;
IF NOT EXISTS(prgn) THEN
RETURN (?);
END_IF;
xc := prgn.centre.real_part;
yc := prgn.centre.imag_part;
ritv := prgn.distance_constraint;
aitv := prgn.direction_constraint;
nearest_good_direction( 3.14159, aitv, a, a_in );
IF COS(a) >= 0.0 THEN
xmin_exists := FALSE;
xmin := xc + real_min(ritv) * COS(a);
xmin_in := a_in AND (min_included(ritv) OR (COS(a) = 0.0));
ELSE
IF max_exists(ritv) THEN
xmin_exists := FALSE;
xmin := xc + real_max(ritv) * COS(a);
xmin_in := a_in AND max_included(ritv);
ELSE
xmin_exists := FALSE;
END_IF;
END_IF;
nearest_good_direction( 0.0, aitv, a, a_in );
IF COS(a) <= 0.0 THEN
xmax_exists := FALSE;
xmax := xc + real_min(ritv) * COS(a);
xmax_in := a_in AND (min_included(ritv) OR (COS(a) = 0.0));
ELSE
IF max_exists(ritv) THEN
xmax_exists := FALSE;
xmax := xc + real_max(ritv) * COS(a);
xmax_in := a_in AND max_included(ritv);
ELSE
xmax_exists := FALSE;
END_IF;
END_IF;
nearest_good_direction( -0.500000 * 3.14159, aitv, a, a_in );
IF SIN(a) >= 0.0 THEN
ymin_exists := FALSE;
ymin := yc + real_min(ritv) * SIN(a);
ymin_in := a_in AND (min_included(ritv) OR (SIN(a) = 0.0));
ELSE
IF max_exists(ritv) THEN
ymin_exists := FALSE;
ymin := yc + real_max(ritv) * SIN(a);
ymin_in := a_in AND max_included(ritv);
ELSE
ymin_exists := FALSE;
END_IF;
END_IF;
nearest_good_direction( 0.500000 * 3.14159, aitv, a, a_in );
IF SIN(a) <= 0.0 THEN
ymax_exists := FALSE;
ymax := yc + real_min(ritv) * SIN(a);
ymax_in := a_in AND (min_included(ritv) OR (SIN(a) = 0.0));
ELSE
IF max_exists(ritv) THEN
ymax_exists := FALSE;
ymax := yc + real_max(ritv) * SIN(a);
ymax_in := a_in AND max_included(ritv);
ELSE
ymax_exists := FALSE;
END_IF;
END_IF;
IF NOT (((xmin_exists OR xmax_exists) OR ymin_exists) OR ymax_exists) THEN
RETURN (?);
END_IF;
IF xmin_exists THEN
IF xmin_in THEN
min_clo := closed;
ELSE
min_clo := open;
END_IF;
IF xmax_exists THEN
IF xmax_in THEN
max_clo := closed;
ELSE
max_clo := open;
END_IF;
xitv := make_finite_real_interval(xmin, min_clo, xmax, max_clo);
ELSE
xitv := make_real_interval_from_min(xmin, min_clo);
END_IF;
ELSE
IF xmax_exists THEN
IF xmax_in THEN
max_clo := closed;
ELSE
max_clo := open;
END_IF;
xitv := make_real_interval_to_max(xmax, max_clo);
ELSE
xitv := the_reals;
END_IF;
END_IF;
IF ymin_exists THEN
IF ymin_in THEN
min_clo := closed;
ELSE
min_clo := open;
END_IF;
IF ymax_exists THEN
IF ymax_in THEN
max_clo := closed;
ELSE
max_clo := open;
END_IF;
yitv := make_finite_real_interval(ymin, min_clo, ymax, max_clo);
ELSE
yitv := make_real_interval_from_min(ymin, min_clo);
END_IF;
ELSE
IF ymax_exists THEN
IF ymax_in THEN
max_clo := closed;
ELSE
max_clo := open;
END_IF;
yitv := make_real_interval_to_max(ymax, max_clo);
ELSE
yitv := the_reals;
END_IF;
END_IF;
RETURN (make_cartesian_complex_number_region(xitv, yitv));
END_FUNCTION;
Referenced By
Defintion enclose_pregion_in_cregion is references by the following definitions:
[Top Level Definitions] [Exit]Generated by STEP Tools® EXPRESS to HTML Converter
2020-07-28T17:02:20-04:00